TBK1, a prioritized drug repurposing target for amyotrophic lateral sclerosis: evidence from druggable genome Mendelian randomization and pharmacological verification in vitro.

Journal: BMC medicine

Volume: 22

Issue: 1

Year of Publication: 2024

Affiliated Institutions:  Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China. Department of Pathophysiology, West China College of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, , China. Mental Health Center, West China Hospital, Sichuan University, Sichuan, Chengdu, , China. TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, , China. Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, , China. Department of Pathophysiology, West China College of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, , China. wangyi@scu.edu.cn. Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China. yongping.chen@wchscu.cn.

Abstract summary 

There is a lack of effective therapeutic strategies for amyotrophic lateral sclerosis (ALS); therefore, drug repurposing might provide a rapid approach to meet the urgent need for treatment.To identify therapeutic targets associated with ALS, we conducted Mendelian randomization (MR) analysis and colocalization analysis using cis-eQTL of druggable gene and ALS GWAS data collections to determine annotated druggable gene targets that exhibited significant associations with ALS. By subsequent repurposing drug discovery coupled with inclusion criteria selection, we identified several drug candidates corresponding to their druggable gene targets that have been genetically validated. The pharmacological assays were then conducted to further assess the efficacy of genetics-supported repurposed drugs for potential ALS therapy in various cellular models.Through MR analysis, we identified potential ALS druggable genes in the blood, including TBK1 [OR 1.30, 95%CI (1.19, 1.42)], TNFSF12 [OR 1.36, 95%CI (1.19, 1.56)], GPX3 [OR 1.28, 95%CI (1.15, 1.43)], TNFSF13 [OR 0.45, 95%CI (0.32, 0.64)], and CD68 [OR 0.38, 95%CI (0.24, 0.58)]. Additionally, we identified potential ALS druggable genes in the brain, including RESP18 [OR 1.11, 95%CI (1.07, 1.16)], GPX3 [OR 0.57, 95%CI (0.48, 0.68)], GDF9 [OR 0.77, 95%CI (0.67, 0.88)], and PTPRN [OR 0.17, 95%CI (0.08, 0.34)]. Among them, TBK1, TNFSF12, RESP18, and GPX3 were confirmed in further colocalization analysis. We identified five drugs with repurposing opportunities targeting TBK1, TNFSF12, and GPX3, namely fostamatinib (R788), amlexanox (AMX), BIIB-023, RG-7212, and glutathione as potential repurposing drugs. R788 and AMX were prioritized due to their genetic supports, safety profiles, and cost-effectiveness evaluation. Further pharmacological analysis revealed that R788 and AMX mitigated neuroinflammation in ALS cell models characterized by overly active cGAS/STING signaling that was induced by MSA-2 or ALS-related toxic proteins (TDP-43 and SOD1), through the inhibition of TBK1 phosphorylation.Our MR analyses provided genetic evidence supporting TBK1, TNFSF12, RESP18, and GPX3 as druggable genes for ALS treatment. Among the drug candidates targeting the above genes with repurposing opportunities, FDA-approved drug-R788 and AMX served as effective TBK1 inhibitors. The subsequent pharmacological studies validated the potential of R788 and AMX for treating specific ALS subtypes through the inhibition of TBK1 phosphorylation.

Authors & Co-authors:  Duan Wang Su Gu Shen Jiang Ren Cao Li Wang Chen

Study Outcome 

Source Link: Visit source

Statistics
Citations :  Oskarsson B, Gendron TF, Staff NP. Amyotrophic lateral sclerosis: an update for 2018. Mayo Clin Proc. 2018;93(11):1617–1628. doi: 10.1016/j.mayocp.2018.04.007.
Authors :  11
Identifiers
Doi : 96
SSN : 1741-7015
Study Population
Male,Female
Mesh Terms
Humans
Other Terms
Amyotrophic lateral sclerosis;Drug repurposing;Druggable gene;Mendelian randomization;TBK1
Study Design
Study Approach
Country of Study
Publication Country
England