Microglia-neuron interactions in schizophrenia.

Journal: Frontiers in cellular neuroscience

Volume: 18

Issue: 

Year of Publication: 

Affiliated Institutions:  Molecular Neurobiology, Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany. Department of Psychiatry, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany.

Abstract summary 

Multiple lines of evidence implicate increased neuroinflammation mediated by glial cells to play a key role in neurodevelopmental disorders such as schizophrenia. Microglia, which are the primary innate immune cells of the brain, are crucial for the refinement of the synaptic circuitry during early brain development by synaptic pruning and the regulation of synaptic plasticity during adulthood. Schizophrenia risk factors as genetics or environmental influences may further be linked to increased activation of microglia, an increase of pro-inflammatory cytokine levels and activation of the inflammasome resulting in an overall elevated neuroinflammatory state in patients. Synaptic loss, one of the central pathological hallmarks of schizophrenia, is believed to be due to excess removal of synapses by activated microglia, primarily affecting glutamatergic neurons. Therefore, it is crucial to investigate microglia-neuron interactions, which has been done by multiple studies focusing on post-mortem brain tissues, brain imaging, animal models and patient iPSC-derived 2D culture systems. In this review, we summarize the major findings in patients and and models in the context of neuron-microglia interactions in schizophrenia and secondly discuss the potential of anti-inflammatory treatments for the alleviation of positive, negative, and cognitive symptoms.

Authors & Co-authors:  Hartmann Heider Wüst Fallgatter Volkmer

Study Outcome 

Source Link: Visit source

Statistics
Citations :  Bauer M. E., Teixeira A. L. (2019). Inflammation in psychiatric disorders: what comes first? Ann. N. Y. Acad. Sci. 1437 57–67. 10.1111/nyas.13712
Authors :  5
Identifiers
Doi : 1345349
SSN : 1662-5102
Study Population
Male,Female
Mesh Terms
Other Terms
co-culture;complement system;inflammation;microglia;neuron;schizophrenia;synaptic pruning
Study Design
Study Approach
Country of Study
Publication Country
Switzerland